Differential quadrature method (DQM) and Boubaker Polynomials Expansion Scheme (BPES) for efficient computation of the eigenvalues of fourth-order Sturm–Liouville problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Boubaker Polynomials Expansion Scheme for Solving Applied-physics Nonlinear high-order Differential Equations

In this study, the main features of the Boubaker Polynomials Expansion Scheme (BPES) are outlined on the basis of published, compared and confirmed solution to differently established appliedphysics nonlinear problems. Some new applications of the same scheme in the field of fluids motion and waves dynamics are also discussed. PACS: 2010 02.30.Jr; 02.30.Sa

متن کامل

computing the eigenvalues of fourth order sturm-liouville problems with lie group method

‎in this paper, we formulate the fourth order sturm-liouville problem (fslp) as a lie group matrix differential equation. by solving this ma- trix differential equation by lie group magnus expansion, we compute the eigenvalues of the fslp. the magnus expansion is an infinite series of multiple integrals of lie brackets. the approximation is, in fact, the truncation of magnus expansion and a gauss...

متن کامل

Differential Quadrature Method for the Analysis of Hydrodynamic Thrust Bearings

This paper presents the application of the method of generalized differential quadrature (GDQ) for the analysis of hydrodynamic thrust bearings. GDQ is a simple, efficient, high-order numerical technique and it uses the information on all grid points to approach the derivatives of the unknown function. The effectiveness of the solution technique is verified by comparing the GDQ computed results...

متن کامل

semi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method

در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 2012

ISSN: 0307-904X

DOI: 10.1016/j.apm.2011.05.030